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When is the numerical value of the critical point changed by an enhancement 
of the process or of the interaction? Ferromagnetic spin models, independent 
percolation, and the contact process are known to be endowed with 
monotonicity properties in that certain enhancements are capable of shifting the 
corresponding phase transition in only an obvious direction, e.g., the addition 
of ferromagnetic couplings can only increase the transition temperature. The 
question explored here is whether enhancements do indeed change the value of 
the critical point. We present a generally applicable approach to this issue. For 
ferromagnetic Ising spin systems, with pair interactions of finite range in d>~ 2 
dimensions, it is shown that the critical temperature T~. is strictly monotone 
increasing in each coupling, with the first-order derivatives bounded by positive 
functions which are continuous on the set of fully d-dimensional interactions. 
For independent percolation, with 0 < Pc < 1, we prove that any "essential 
enhancement" of the process has an effect on the critical probability, a result 
with applications to the question of the existence of "entanglements" and to 
invasion percolation with trapping. 

KEY WORDS:  Critical points; enhancements; percolation; Ising spins; 
inequalities; entanglements. 

1. I N T R O D U C T I O N  

1.1. Enhancements in Percolat ion Models  

Suppose that LPl is a sublattice of the lattice L~2. It is clear that the critical 
probabilities of the corresponding percolation processes satisfy 
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Pc(501) i> Pc(502), since there is an infinite cluster in 5~ whenever there is 
one in 501. To determine when strict inequality is valid is a more 
demanding question. A more general formulation of the question, which we 
study in this paper, is as follows. In a dynamical percolation process in 
which the initial configuration, generated by independent variables having 
density p, is enhanced by means of a local function of the configuration, 
does the new critical density differ in value from the critical density Pc of 
the original process? Similar questions involving critical temperatures arise 
in studies of ferromagnetic models, with enhancements produced by the 
addition of ferromagnetic couplings. It is our purpose in this paper to 
introduce a general approach for dealing with such issues, and present 
some results which include a fairly comprehensive statement for indepen- 
dent percolation. 

Previous results on the strict monotonicity of critical points have been 
established for percolation models on some two-dimensional lattices by 
Higuchi (1) and Kesten (ref. 2, Chapter 10); more recently, Menshikov (3) 
obtained a more general conclusion, subject, however, to an unwieldy 
condition concerning the relationship of 50l to Y2. 

In broad terms our result for percolation is that, if 0 < Pc < 1, the 
numerical value of the critical point is shifted by any enhancement which 
(at the deterministic level) has the capability for creating a percolation 
backbone (i.e., a doubly-infinite path). In particular, this result extends 
Menshikov's theorem, replacing its condition by the natural necessary and 
sufficient condition on the pair (501, 502)" Other applications of the general 
criterion include the proof that entanglement (the occurrence of infinite 
interlocking chains of open edges) occurs in three and more dimensions at 
certain bond densities strictly below p~ (as suggested by Aizenman et al. (4) 
and seen numerically in the work of Kantor and Hassold(5t). 

As a prototypical example, we consider here site percolation on the 
d-dimensional cubic lattice with site density p, and d>~ 2. The lattice has 
vertex set 7/d and edges joining all pairs of vertices distance one apart. For 
each site there is an associated random variable n(x) which assumes the 
values 1 (x is open) and 0 (x is closed)--with percolation occurring along 
the open sites. The random variables {n(x)} are independent and 
identically distributed, with the probability for a site to be open equal to 
p. We represent each realization of the process by the collection of open 
sites, (~ = {x e 7/d: n(x) -- 1 }, to which we refer as the configuration. The set 
of all configurations is denoted by g2. The choice of "bond" or "site" 
percolation is basically irrelevant to our argument, as--to a large 
extent--is the choice of lattice. 

The enhancement is performed by means of a translation-invariant 
procedure, which is governed by a function assigning to each configuration 
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co a finite subset of the lattice, go(CO)c yd; the prototypical enhancement 
consists of declaring all sites in go(co) to open, regardless of their original 
states. We assume this function to be local in the sense that go(co) depends 
only on the restriction of co to a finite set F =  {x e Z~: Ixl ~< R } (with some 
R < oo) and furthermore go(co)c F; we extend the function by translations 
to a family of functions associated with the lattice sites: gx(co)= 
x + go(co- x), where co -  x is the translate of co by x. The enhancement 
may be deterministic or stochastic. In the deterministic case, the enhanced 
configuration is (5 given by 

In a stochastic enhancement there is an additional collection {a(x)} of 
independent random variables taking values in {1, 0}. We activate the 
enhancement gx if and only if a(x) = 1. Denoting c~ = {x �9 7/d: a(x) = 1 } the 
collection of activated enhancement sites, the enhanced configuration is 
co w g~(co), with 

g~(co)= ~) egx(co) (1.2) 
X E ~  

The distribution of {a(x)} is parametrized by s = Prob(a = 1). 
Of principal interest are enhancements which can create infinite open 

clusters where previously none existed. Not all enhancements will have this 
property, e.g., the placement of a single open vertex in the center of an 
otherwise open large block is of little value in creating infinite clusters. We 
call the enhancement essential if there exists a configuration co such that 
there is no doubly-infinite path in the open subgraph of ya  corresponding 
to co but there is such a path in the open subgraph corresponding to the 
localy enhanced configuration co w go(co). That is, essential enhancements 
are those capable of producing a "backbone." 

Let O(p) be the probability that the origin is in an infinite cluster of 
open vertices in the original process, and let O(p, s) be the corresponding 
probability in the (stochastically) enhanced process. Clearly O(p)= O(p, 0). 
We note that O(p) is a monotone function of p, and that O(p, s) is a 
monotone function of s, but not necessarily of p [monotonicity in p 
depends on the enhancement function go(co)]. As usual, we define Pc-- 
sup{p: 0 (p)=0} ,  the critical probability of site percolation on Z a. Our 
main result is that systematic enhancement changes the critical point of the 
process, in the following sense. 

T h e o r e m  1. Suppose p~.>0 (i.e., d~>2), and let s > 0 .  For any 
essential enhancement of the percolation model, there exists a nonempty 
interval (~(s), Pc) such that O(p, s) > 0 when ~(s) < p < Pc. 
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The argument of Burton and Keane (6) may be applied to the enhanced 
process to deduce that it has no more than one infinite cluster almost 
surely. 

It is at one's peril that one tries to weaken or remove the condition 
that the enhancement be essential. For example, it may seem tempting 
to assume either of the slightly weaker conditions: (i) there exists a 
configuration co which contains no infinite cluster, but for which there 
exists an infinite cluster in the fully enhanced configuration do, or (ii) there 
exists an enhanced configuration (co, c~) which contains no doubly-infinite 
cluster if a (0 )=  0, but contains such a cluster if a (0 )=  1. Neither of these 
assumptions is sufficient to guarantee the conclusion of the theorem, as the 
following example indicates. Consider site percolation on the triangular 
lattice, with critical probability 1/2, We enhance the process as follows. For 
each site x, we examine the states of x and its neighbors. If all such states 
are closed, we make x open. Let JV be the set of sites x for which n(x) =- 0 
and in addition n(y) = 0 for all neighbors y of x, and let C be a connected 
component of Y .  If C is finite, then, by the self-matching property of the 
triangular lattice, the set of vertices in C whose states are changed by the 
enhancement forms a finite component in the enhanced configuration. On 
the other hand, it may be seen by an elementary rescaling argument that 
if p > 1 -  2 -1/3 (<  1/2), then Y contains no infinite component almost 
surely. Thus there is a range of values of p below Pc in which the enhance- 
ment does not produce an infinite cluster, and the conclusion of Theorem 1 
is false. Finally, consider the following configuration (co, c~). Suppose 
b(x)=O for all x, and a(x)=O for all x except those x lying along a 
doubly-infinite horizontal line where a(x)= 1. This configuration has the 
two properties stated at the beginning of the paragraph. 

The restriction to hypercubic lattices is not essential. Similarly, it is 
not essential that the enhancement is attempted at all sites. The proof 
merely requires that the collection of enhancement sites [the sites x which 
appear in Eqs. (1.1) and (1.2)] has the property that the distance to it from 
any site y ~ Z a is bounded uniformly in y. 

In Section 2 we give some applications of Theorem 1 (strict mono- 
tonieity of Pc as a function of the lattice, the entanglement transition, and 
the contact process). Its proof is given in Section 3. 

1.2. Strict Monotonicity of Tc and Bounds on ~Tc/~Jz for 
Ferromagnetic Spin Models 

Questions of strict monotonicity arise also in the context of 
ferromagnetic models, e.g., of Ising spins (ax = _+1) on a d-dimensional 
lattice Z d, with interaction of the form 
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(1.3) 
{x,y} x 

where x and y range over sites of the lattice. The coupling strengths are 
assumed here to be: (i) nonnegative, (ii) translation-invariant, and (iii) 
finite range (R). We shall denote Jz-Jo.z and J =  {Jz}. For h = 0  the 
system has a global spin-flip symmetry which in d~> 2 dimensions is broken 
at low temperatures. 

The order parameter whose nonvanishing characterizes the symmetry 
breaking is the limit M ( T , J ) = l i m L ~ o o  (a0)L,+ of the finite-volume 
magnetizations at temperature T (=f l  1) and h = 0 ,  in the regions 
BL = I - L ,  L] d with the boundary condition a ~ +1 in the exterior. The 
critical temperature is defined by 

Tc(J) = sup{ T: M(T, J)  :~ 0} (1.4) 

We consider now Tc as a function over the space 9~= [0, oe) "R 
(modulo the reflection) of ferromagnetic interactions (with J z - J  z)- By 
Griffiths' "second" correlation inequality, which yields 8 ( a  0) L. +/OJz >~ O, 
To(J) is a nondecreasing function of J [i.e., Tc(J)]" in each coordinate J~]. 
The critical temperature is also a homogeneous function of the couplings, 
Tc(2J) = 2Tc(J). These two basic properties suffice to imply that To(J) is 
Lipschitz continuous in J and satisfies 

OTc T~ 
0~<~b~<~-~b in the weak sense (1.5) 

i.e., as distributions. 
For our result, which is stated below, we require Jz to be nonzero on 

(at least) some collection of vectors whose linear combinations with integer 
coefficients span the entire lattice yd. This collection of vector is denoted 
~0={z~} and the restriction of J to ~'o is Jo={Jz:ze~o}. The 
ferromagnetic coupling J is called regular if {J~ > 0: z E N0} for some such 
r Finally, the subset of regular ferromagnetic couplings is denoted Jo. 
For a given J E Jo there is a finite collection of possibilities for the set N0. 
We admit to a slight abuse of notation in ignoring this multiplicity in our 
reference to Jo (below). 

T h e o r o m  2. In d>~2 dimensions, the critical temperature T~(J) is 
strictly monotone increasing (i.e., in each component of the interaction), on 
the space of regular interactions. Furthermore, 

g-~ <~(T~l ~ jz:) ~Tc.< ~' --~..~g for each zeBR (1.6) 

822/63/5-6-2 
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where g = g (T / t Jo ,  T~-tllJII, R) is a continuous function on 
Jo x (0, oQ)xZ+ with values in (0, oo), and IIJII-maxz{iJ,  I }. 

It may be noted that the function g is strictly positive even where some 
of the couplings vanish, provided J has a spanning collection of non- 
vanishing terms, in the sense explained in the definition of regularity. 

1.3. The General Approach 

Our derivation of the monotonicity and continuity properties of the 
critical points in the above models is based on a common idea (with a 
special prelude in the case of the nonrandom enhancement) which can be 
separated from some of the less appealing technicalities. Let us present it 
here. 

To study a nonrandom enhancement, we start with the preparatory 
step of imbedding the "rigid" model within the corresponding one- 
parameter family of stochastic enhancements with the continuously varying 
parameter s. Thus, in all the situations described above, we are dealing 
with a multiparameter model--with the parameters (p, s) for percolation 
and J = {Jz} for the ferromagnetic spin system--whose phase transition is 
characterized by the vanishing, in the infinite-volume limit, of a quantity 
which is a monotonic increasing function of some of the relevant 
parameters (s in the case of percolation and all the Jz in the spin model). 
For percolation, that quantity may be chosen as r(p, s) = limL+ ~ zL(P, s) 
with ~L(P, s) the probability that in the enhanced configuration the radius 
of the open cluster at a given site exceeds L. For the ferromagnetic models 
the quantity is M(T,J) ,  with (a0)L. + playing a similar role to 
percolation's ~c(P, s). (Other choices are possible, e.g., the sum of the 
corresponding two-point function.) 

The key idea now is to derive bounds on the ratios of partial 
derivatives of the finite-volume approximants of the order parameter, 
which are uniform in the cutoff L. For percolation we prove 

-~srL(p,s)>~gl(p,s) rL(p,s) (1.7) 

with gl(P, s) continuous and strictly positive on (0, 1)2. For ferromagnetic 
models we show that 

Oj(ao)L,+<~g(T-1Jo, T IIIJII, R) : ( ao)c ,+  forall z,z'~BR 

(1.8) 
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with some function g which is continuous and strictly positive on 
J0 x (0, oe) x 7/+. The reason such differential inequalities hold has to do 
with separation of scales: the partial derivatives with respect to any of the 
local parameters--density at a site, or the coupling strength of a particular 
local interaction term--may be represented as a sum of probabilities of 
events with a common long-distance structure and only local dependence 
on the particular term. These local differences affect the relevant quantity 
only via bounded factors. Such a picture emerges from Russo's formula for 
independent percolation and from the random-current representation (8) for 
Ising models. 

The differential inequalities (1.7) and (1.8) imply monotonicity of the 
order parameter along the characteristics of the corresponding first-order 
partial differential equation. [Since (1.7) and (1.8) are inequalities, there is 
no loss of generality in implicitly assuming that the function gl,  and corre- 
spondingly g, are differentiable and hence that the associated vector fields 
have well-behaved integral curves.] In that sense, or equivalently in the 
standard distributional sense, these inequalities survive the limit L ~ oo 
[with M(To,  J) replacing (ao)L,  + ]. 

In the case of percolation, (1.7) shows that r(p(t) ,  s(t)) is a non- 
increasing function of t when (p, s) - (p(t),  s(t)) satisfies 

d 
(p, s) = (gl(P,  s), - 1) (1.9) 

In particular, r(p, s) > 0 for every point (p, s) from which the forward orbit 
crosses the line { p = Pc, s E [0, l ]  } (by the monotonicity inherent in the 
enhancement, ~(p, s) > 0 for any p > Pc and se  [0, 1]). Owing to the strict 
positivity of gl in (0, 1)2: for any s > 0 there is some p < Pc such that the 
point (p, s) satisfies the above criterion. Theorem 1 follows therefore from 
the relation (1.7). 

To explain Theorem 2, let us first ignore questions of differentiability. 
The homogeneity of M, expressed by M(2T,  2J) = M(T,  J), yields 

J) <~M(T, J) v= ~Tc 7 J:, OM(T, = Tc - -  (1.10) 
OJ z "~, O J=, T= T~ (~Jz rc 

(The derivation is by elementary arguments, with the first step obtained by 
differentiating the homogeneity equation with respect to 2, and the second 
step based on the conditions for d M =  0.) The two inequalities of (1.6) are 
easily obtained by applying to (1.10) the bounds (1.8) with (aO)L.+ 
replaced by M(T0, J). 

In order to carry out the above argument rigorously, we first apply it 
to the (smooth) functions (aO)L. + (replacing M), with the role of Te taken 
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by t,,L(J) defined by the condition (ao)L,  +(t J ) =  e. That yields uniform 
bounds, as in (1.6), for the derivatives of t~.L(J). Theorem 2 follows by a 
simple limiting argument, for which it is convenient to take first L ~ oo 
and then e ~ 0 + 

2. S O M E  I M P L I C A T I O N S  OF THE E N H A N C E M E N T  C R I T E R I O N  
FOR P E R C O L A T I O N  

In advance of proving Theorem 1 we give some applications. 

Lattices and Sublattices. Let 2,1 be a sublattice of the lattice 2,2 
obtained by striking out a periodic class of vertices. We shall not make 
these terms more precise, but we have in mind situations of which the 
following is an example. 2,1 is the square lattice, and 2,2 is obtained by 
placing a vertex in the center of each face and joining it to each of the four 
corners. 

Let P,.(2,1) and Pc(~.) be the critical probabilities of the corre- 
sponding site percolation processes. We may think of site percolation on 
2,2 as being an enhancement of site percolation on 2,1, the enhancement 
being the addition of a vertex belonging to 2,2 but not 2,1, and the density 
of the enhancement being equal to that of the original process. If the 
enhancement is essential (as is easily verified in the above example), then 
Pc(2,1) > Pc(2,2). A version of this conclusion was reached by Menshikov. (~) 

The condition of essentialness may be rephrased as follows for this 
situation. The lattice 5~ is an "essential" sublattice of 5~ if some vertex of 
2'2 which is not in 2,1 is contained in a doubly-infinite path ...,v 1, v0, vl .... 
of 5~ with the property that vi is adjacent to vj if and only if l i - j l  = 1; we 
call such a path stiff There is a corresponding condition valid for bond 
percolation: some edge of 5('2 which is not in 2,1 is contained in a doubly- 
infinite path of 5~ 

s Consider, for example, bond percolation on 7] J with 
edge density p, and define the subset Bn of Z d as Bn= I - n ,  n] a. The 
critical probability Pc is characterized by the fact (see, e.g., Grimmett (1~ 
that, if p > Pc, then two opposite faces of Bn have probability 1 - o(1) (as 
n ~ oo) of being joined by an open path in Bn, whereas no such path exists 
[-with probability 1 - o ( 1 ) ]  if p < Pc. A weaker form of connection between 
opposite faces is an "entanglement." We may think of the open edges as 
being rubber connections which are fastened to each other at intersections, 
and we say that opposite faces of Bn are entangled if they cannot be pulled 
apart from each opther in the resulting network of distortable but 
hypothetically unbreakable strands. See Fig. 1. 
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Fig. 1. An example of entanglement in which the left and right faces of the cube are 
entangled without being connected. 

What is the probability 7zn(p) that two opposite faces of B, are 
entangled? Clearly 7zn(p)--. 1 as n ~ oo if P>Pc, and we shall see that 
there exists p < p, for which the same is true. That is to say, the critical 
probability for the existence of entanglements is strictly less than that for 
the existence of infinite paths. 

There are many (bond) enhancements of bond perculation which 
create entanglements. Perhaps the simplest is that illustrated in Fig. 2, in 
which two intersecting 2 x2 open squares are fastened together by the 
addition of an edge between them. This bond process may be transformed 
in the usual way into a site process on a different lattice, and it is evident 
that the corresponding enhancement is essential. The density of the 
enhancement is 1, but the critical point is shifted for any strictly positive 
density of enhancements. Note that this enhancement can create (almost 
surely) only one infinite cluster, and thus the usual argument (see ref. 10, 
Chapter6])  may be used to show that large boxes are entangled (with 

Fig. 2. The enhancement with which Theorem 1 implies that the entanglement transition 
occurs before the percolation transition: any two interlinking 2 x 2 squares are connected by 
the addition of a joining bond. 
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probability converging to 1) whenever the enhanced process has an infinite 
cluster. For  related literature, see refs. 4 and 5. 

Invasion Percolation. Consider site percolation on the lattice 5O 
with density p, and let a] be the subgraph of Y induced by the set of open 
vertices together with the set of closed vertices contained in finite closed 
clusters. Can ~ contain an infinite component for values of p strictly less 
than the critical probability Pc? The answer depends on the geometry of 
5~ Chayes, Chayes, and Newman (CCN) (11) have observed that the 
answer is no for the triangular lattice, but yes for the line graph of the 
square lattice. In the latter case, the simple enhancement which replaces a 
closed vertex by an open vertex whenever all of its neighbors are open is 
essential. Thus the enhanced process contains an infinite open cluster for 
certain values of p strictly less than pc--as CCN proved for d-- 2 dimen- 
sions by more specialized methods. The above enhancement adds isolated 
closed vertices only; the effect on the value of the critical point of adding 
all closed vertices in finite closed clusters is even greater. 

A similar conclusion is valid for any lattice with the property that 
there exists a finite subgraph S and a vertex configuration co such that co 
contains no doubly-infinite open path if S is a closed cluster, but that co 
contains a "stiff' doubly-infinite open path if all vertices in S are open. The 
two-dimensional triangular lattice violates this condition, since in this case 
the "external boundary" of any finite subgraph is connected. 

The Contract Process and Directed Percolation. The ideas of this 
paper may be applied also to the contact process, a stochastic model for 
the spread of infection in a d-dimensional static medium which for 
convenience is taken to be Z a. Each infected site x may infect other sites y, 
with the infections occurring independently at rate 2Jx~y, while the 
infected sites also heal, independently, at rate 1 (on a certain time scale). 
In this model, when the infection rate exceeds a certain critical value 2c, a 
positive rate of infection is sustained indefinitely. There is a widely used 
"graphical representation" of the contact process as oriented percolation 
on the graph 2dx  N (based on the space x time picture of the spread of 
infection(12~). An adaptation of our methods will prove for this model that 
,t c ~ is strictly monotone in the infection rates (and in the case of "nearest- 
neighbor" models, in the graph structure of the underlying lattice) with 
Lipschitz-continuity properties similar to those discussed above for Tc(J). 
A more general formulation of the monotonicity is to say that 2c is shifted 
by any systematic enhancement favoring the transmission of infection 
which is essential, in the sense that in terms of the oriented percolation 
representation this enhancement can produce doubly-infinite directed paths 
where none previously existed. 
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This model differs from those dealt with explicitly here in two ways: (i) 
the underlying geometry is that of oriented percolation, (ii) the graph has 
one continuous direction. Thus, suitable adjustments are required in the 
arguments used here in Section 3. Some of the adjustments caused by the 
orientation (i) are similar to those confronted in refs. 13 and 14. Effects of 
the continuum have been tackled in a related context in refs. 13 and 14. In 
particular, the notion of pivotal intervals developed in ref. 13 is relevant 
here. 

3. PROOF OF T H E O R E M  1 

We assume throughout this section that we are dealing with an essen- 
tial enhancement. The enhancement is stochastic--if not originally so, then, 
as explained in the introduction, we imbed it in such an enhancement. Our 
task is to derive the bound (1.7), since we saw already that Theorem 1 
follows from this inequality. 

The derivation makes use of Russo's formula. Here is some notation. 
As explained in the introduction, the realization of the joint process is 
described by a pair of configurations (co, ~ ) s ~ x f 2  consisting of: the 
collection co of open sites, and the collection ~ of activated enhancement 
sites. The enhanced configuration of open sites is co u E~(co). For any (co, c~) 
and any vertex x we write WX(co, c~) [respectively AX(co, c~)] for the 
configuration obtained from (co, c 0 by setting n ( x ) = l  [respectively 
a(x) = 1]; of course, any change in the value of n(x) requires the recalcula- 
tion of all enhancements which may be affected by the site x. Similarly, 
we write Wx(co, ~) and Ax(co,~) for the configurations obtained by 
setting n ( x ) = 0  or a (x )=0 .  For any event d (a subset of Q xg? 
measurable with respect to the product a-algebra), any vertex x, and any 
configuration (co, c~), we say that x is (n + )pivotal for W if WX(co, c~)ed  
but Wx(CO, ~) r d [respectively, (n- )p ivota l  if WX(co, e) r d but 
Wx(co, e ) e d ] ;  we make a similar definition for (a + )pivotal and 
(a- )p ivota l  sites, for which the roles of W ~ and Wx are taken by A x 
and A~. 

Let Z be the a-field of subsets of ~2 generated by the finite-dimensional 
cylinders. ~2 is partially ordered ( 7 )  via the natural notion of inclusion. 
We call a subset F e  Z increasing if ~ ~ F and ~ ' 7  ~ imply ~'E F. To any 
F~  Z there corresponds the event e(F)= {(co, ~): co u o~(co)~ F}. If F~  X is 
increasing, then there can exist no (a - )p ivota l  sites for d = e(F), although 
there may exist (n- )p ivota l  sites. We note in the usual way that events of 
the form {x is (n + )pivotal for d }  are independent of the value of n(x), 
and similarly for events of the form {x is (a + )pivotal for W}. For d e Z, 
we write Pp,~(d) for the probability that the enhanced configuration 
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co w E~(co) lies in d .  We write Ep, s(Y ) for the expectation of a random 
variable Y which is a function of the configuration (co, ~). 

It is straightforward to generalize Russo's formula, as in ref. 10, 
Section 2.4, and thus we shall omit the proof of the next lemma. Let 
N + ( d )  [respectively N~ ( d ) ]  denote the number of (n + )pivotal [respec- 
tively (n - )p ivo t a l ]  vertices for the event d ;  we introduce similarly the 
numbers N + ( ~ )  [respectively N ~ ( d ) ]  of (a + )pivotal and ( a - )p ivo ta l  
sites. 

Lemma 1 (Russo's formula). Let d be an increasing event in Z 
which depends only on the states of finitely many vertices. Then 

Pp,~(~4) = Ep, JN + (~4))- Ep, JNo~ (d))  
up 

and 

(3.1) 

~s Pp, s(d)= Ep,s(N~ + ( d ) )  (3.2) 

Let B n = [ - n ,  n] d, and let A, be the set of configurations (o~, ~) such 
that in the enhanced configuration of open sites there exists a connected 
path joining the origin to some vertex of 0Bn, the boundary of Bn; this 
event is defined in terms of the states of the variables n(x) and a(x) in the 
finite region {xeZa:  d(x,B,)<~R}; here d is the distance function 
d(x, y) = max i I x i -  Yil and R is the radius of the domain of dependence of 
the enhancement function. We note that in the notation described in the 
introduction 

~n(p, s)= Pp,.(A.) (3.3) 

The next lemma is our final ingredient. 

k o m m a  2. There exists a positive integer L and a strictly positive 
continuous function g=g(p, s) on (0, 1) 2 such that 

Ep, s(N+ (A,)) >~ g(p, s) Ep, JN+ (A,)) (3.4) 

for all n >/L. 

ProoL The main idea is as follows. Suppose that the vertex x is 
(n + )pivotal for A,. Then, by paying a price which is bounded away from 
0 and 1, we may create a configuration in which some site within distance 
R from x is (a + )pivotal for A,. It will follow that the mean numbers of 
(n + )pivotal sites and (a + )pivotal sites are comparable, uniformly in n. 
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Recall that the enhancement has been assumed to be essential, which 
is to say that there exists a realization co which contains a doubly-infinite 
path if co is replaced by co u g0(co), but not otherwise. The following is an 
easy geometrical consequence of this assumption. Let C,~ be the set of 
configurations (co, ~) for which (i) a ( x ) =  0 for all sites within distance R of 
the interior of Bin, and (ii) the enhanced configuration has no path from 
e_m = ( - m ,  0, 0,..., 0) to c m = (m, 0, 0,..., 0), entirely contained in B m except 
for its endvertices, but such a path exists if a(0) is set equal to 1. Then 
Pp,,(C,,,) > 0 for all large m. We pick a value of m large enough that m > R 
and Pp.,(Cm) > 0. A pictorial representation of the event Cm can be found 
in the midst of Fig. 4 (within the intermediate-size square there). 

Let x be a vertex and let (co, c~) be a configuration for which x is 
(n + )pivotal for An; we suppose for the moment that x ~ B  . . . .  5\Bm+5 
and n ( x ) = l .  Let Sx= {yeZd:  t y - x l ~ m + 4 + R } ,  and let Y~,Y2,. . . ,Yk 
be a fixed ordering of the sites in S~. For 0 ~< i ~< k we denote by (co, ~)  the 
configuration obtained from (co, ~) by replacing a(yj) by 0 for 1 ~<j~< i. We 
define K = mi n{k :  in (co, ~k) some site in S~ is (a + )pivotal for A~}, with 
the convention that the minimum of the empty set is oo. The configurations 
(co, ei) are obtained from (co, c~) by altering a bounded number of variables 
a(y),  and furthermore IS~[ < oo; therefore, there exists 61(p, s ) <  oo such 
that 

Pp, s(x is (/7 + )pivotal for A , ,  n(x)  = 1, K < oo ) <<. 6 I(P, s) Pp,s(Hx >/l  ) 

(3.5) 

where H x is defined to be the number of sites in Sx which are (a + )pivotal 
for An. We turn next to the case when K =  oo. In this case, x is (n + )pivotal 
for An in the altered configuration of the a(-) variables in which a(y)  is set 
to 0 for all y e S x ;  we denote this altered configuration by (co,~'). In 
(co, ~'), x is (n + )pivotal for An and furthermore n (x)=  1. It follows that 
there exists an open path 0 = vl, V2,...,Vr e OB,, containing x, and we define 
i=min{k:  UkEBm+44-X},  j = m a x { k :  1)kU. Bm+4-I-X}, the first and last 
indices of vertices in B m+4 + X; see Fig. 3. We now change the configura- 
tion co of vertices strictly within B m+4 + X in such a way that the site x 
becomes (a + )pivotal, and we do this in the following way. Note first that, 
by the assumption that all sites in Sx are deactivated, the states of vertices 
in Bm+ 4 -'bX are independent of the configuration (co, c~) outside Bm+ 4 + X. 
We now arrange the internal configuration co in such a way (see Fig. 4) 
that: (i) x is (a + )pivotal for the event that e m + X  is joined to emq-X by 
an open path contained strictly within B m + X except for its endvertices, 
and (ii) there are open paths from vi to e m + X  and from vj to Cm"t-X , 
contained strictly within {B,, + 4\Bin } ~- X except for their endvertices, and 



830 Aizenman and Gr immett  

V 

v 

0 

Fig. 3. The shaded area is the box B,~+4 + x discussed in the proof of Lemma 2. 

such that no vertex of the first is a neighbor of any vertex of the second. 
Rather  than give a turgid formal p roof  of the existence of this construction, 
we refer the reader to Fig. 4. The revised configuration is denoted by 
(co', a'), and it has two impor tant  properties. First, it is obtained from 
(co, e) by changing a bounded  number  of variables within a fixed finite 

Fig. 4. 

----i 
v i 

Detailed view of the box seen in Fig. 3. The vertex at the center is (a + )pivotal for 
the event in question. 
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region, and second, in (co', ~') some site of S~ is (a + )pivotal for A,, so 
that Hx/> 1. It follows that there exists 62(P, s) (<  ~ )  such that 

Pp, s(X is (n + )pivotal for A,,  n(x) = !, K =  oo) ~< 62(p, s) Pp, s (Hx~  l) 
(3.6) 

Combining this with (3.5), we obtain that 

Pp,,(x is (n+)pivotal for A,, n(x)= 1)~< [c51(p, s)+ ~)2(P, s)] Pp,,(H x >~ 1) 

(3.7) 

Therefore there exists q(p, s) (<  ~ )  such that 

Pp,,(xis(n+)pivotalforAn)<<.q(p,s)Pp, s(H~>~l) (3.8) 

for all large n and appropriate x. 
There remain the cases of (n + )pivotal vertices x lying outside 

B . . . .  5\Bin + 5. Suppose that x �9 + 5 and x is (n + )pivotal for An. With 
some minor changes, the above argument may be applied, and there 
follows a sketch. Suppose n(x)= 1, and work within the box Bzm + i0. If the 
quantity corresponding to K is finite, then we argue as before. In the 
second case, we alter the configuration of open vertices within B2m + 1o in 
order to make the site em+ 5 (a + )pivotal for A,; the construction is 
basically the same as before, and leads to an inequality of the above form 
for some amended ~(p,s) and with Hx defined to be the number of 
(a + )pivotal sites within distance R of B2m + I0. A similar argument is valid 
for (n + )pivotal vertices x lying outside Bn_ m 5; note that such vertices 
may exist outside B,, but only within some bounded distance of c~Bn. 

In conclusion, we have that there exists v(p, s) (<  or) such that 

Pp,,(x is (n + )pivotal for A~) <~ v(p, s) Pp, ~(H" ~> 1 ) (3.9) 

for all vertices x, where H2 is defined to be the number of (a + )pivotal sites 
within distance (say) 2m + 10 + R of x. Summing over all x, we deduce that 

Ep,,(N+(An)) <<. v(p, s) ~ Ep, s(H'x) <. Cv(p, s) Ep,~.(N+(A~)) (3.10) 
x 

where C = (4m + 21 + 2R) J. This proves Lemma 2. I 

Proof of (1.7). In view of (3.3), the bound is implied directly by 
(3.4) and Lemma 1 (Russo's formula. I 
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4. FERROMAGNETIC SPIN MODELS 

Let us turn now to the ferromagnetic spin model with the interaction 
(1.3) and the order parameter M(T, J) described in the introduction. The 
finite-volume magnetization ( a o ) L +  is defined by fixing the values of 
all the spins in the complement of BL in 7/d (or just in [ - ( L + R ) ,  
L + R]a\BL) to be cr -- +1, and letting the spins in B L have the equilibrium 
distribution proportional to exp(- f i l l ) .  For each J the critical temperature 
for the phase transition associated with the symmetry breaking is equiva- 
lently characterized by the onset of M(T, J ) r  0, or by the divergence of the 
sum ;g=Zx (ao~rx) - w h i c h  for T>~Tc represents the magnetic suscep- 
tibility. Our argument can be adapted to either of these two criteria (their 
equivalence is rigorously proven in ref. 9). 

For a derivation of a relation such as (1.8) it seems natural to seek a 
representation which displays plainly the model's inherent monotonicity. 
Our discussion is based on the random current representation which was 
used in refs. 8 and 9 for studies of the critical behavior. It will be interesting 
to see derivations of (1.8) at a broader level of generality. For example, the 
present discussion does not apply to Potts models, although they share 
some of the monotonicity properties of the systems discussed here (namely 
the FKG inequalities). 

In the random current representation, thermal averages of spin func- 
tions are presented as ratios of various sums over ensembles of integer- 
valued functions, n =  (n{x,y}), of the bonds of the lattice (with n{x,y } >10). 
The term bonds refers here to pairs of sites, and it suffices to restrict it to 
b =  {x, y} with J~,yr  and with at least one site within the region BL. 
The representation is derived by expanding the factors of exp( - f i l l )  as 

exp(flJx, yoxay) = Z (flJx vax:r y)nX'y/nx ~, ! 

and summing first over the spin variables; see refs. 7 and 8. We adopt here 
the convention that the couplings are denoted in the form Jx.y in places 
where they are regarded as independent quantities, and in the form J~ y 
(i.e., Jz with z = x -  y) where translation invariance is imposed. 

The partition function and the finite-volume magnetization, for the 
region A = B L, take the form 

ZA--2 IAI y'  exp(--f lH)= ~2 w(n) (4.1a) 
~ =  +1  n.cqn c~ A ~ .@ 

and 

(a0)L,+ = ~ w(n)/ZA (4.1b) 
n : S n c ~ A =  {0} 
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with 

w(n)=[I(flJb)"b/nb!,  ~n----{xG zd: ~ nbis odd} (4.2) 
b b ~ x  

The realizations of n are viewed as current configurations, with {nb} the 
f lux numbers, and ~? n the set of sources (i.e., the conserved charge is related 
to just the parity of n). In all the expressions appearing here no restrictions 
are placed on the sources which n may have in the complement of A; this 
reflects the + boundary conditions. 

Of particular interest for us are the quantities 

8Jx,>, (aO)L'+ = (aoaxay)L,+ -- (go)L,+ (axay)s  + --= (ao, Oxay)s 

(4.3) 

A useful feature of the random current representation (discovered first in 
ref. 7, and used extensively in refs. 8 and 9) is that it allows us to cast the 
above truncated correlation function in the form of a sum of positive terms 
over pairs (nx, n2) of current configurations thus: 

(a0; axay)L. + -= ~ w(nl )w(nz) I[n l+n2:O4*c?A]/ZA2 (4.4) 
{O}A{x.y};(,~ 

where I[nl  +n2: 04* c~A] is the indicator function restricting the sum to 
terms for which 0 is not (nl +n2)-connected to the boundary 6A, in the 
sense that there is no connecting path along bonds with nonvanishing 
values of nl +n2. We are using here the abbreviated notation 

~, ~- ~, (4.5) 
{0}A(x, y};~ n t , n 2 : O n t c ~ A : { O } A { x , y } , c ~ n 2 n A = ~  

A configuration n satisfying the source constraints seen in the above sums 
can be viewed (with a certain nonuniqueness) as that of bond occupation 
numbers for a collection of lines consisting of: (1) closed loops, (2) lines 
connecting two different points in ~?A, and (3) a few open-ended lines 
with the endpoints in A forming the indicated sources. (The reader is 
referred to ref. 8 for the figure, and for a number of related observations on 
the implications of this picture for the critical behavior.) 

For each of the contributing terms in (4.4), one of the sites of {x, y} 
is (nl+n2)-connected to 0 and the other is (nl+n2)-connected to the 
boundary c~A, without there being any (nl +n2)-connection between the 
two (long) clusters. [Thus, this representation for the derivative (4.3) bears 
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a great deal of resemblance to Russo's formula for &L/@b in a bond 
percolation model with the bond density Pb for b = {x, y}.] 

Let us turn now to the proof of Theorem 2. We shall omit here the 
proof of the following assertion. Let N0 = {{0, z}: z e Z d} be a collection of 
lattice bonds of finite range, Izl ~<Ro, for which the collection of integer 
multiples of the vectors {z} covers 2U. Then for each R (>~Ro) there is 
some finite K=K(R) such that the following is true. Let u, ve [ - R ,  R] d. 
Then any pair (nl, n2) of current configurations satisfying: (i) n,.b r  only 
for bonds of length Ibl ~< R, (ii) within Ix - K, x + K]d the ni have only the 
sources {x} for nl and {x + u} for n2, and (iii) x is not (nl + nz)-connected 
to x+u, can be modified within I x - K ,  x+K]  ~ to produce a pair satis- 
fying the same conditions--but with u replaced by v. The modification can 
be obtained by, first, setting ni,~ to zero on some pairs (i, b), and, 
subsequently, changing ni.b from 0 to 1 or 2 for certain such (i, b), with the 
bonds b restricted to translates of elements of ~0. Furthermore, such a 
modification can be made by a local algorithm, i.e., one which depends on 
{hi, n2} only via the restrictions to I x - K ,  x+K]  d. 

If n' is obtained from n by a single deletion, i.e., setting an individual 
bond's n0 to 0, and n" is obtained by a change of n; from 0 to k = 1 or 2, 
then 

w(n) ~< w(n') exp(flJb) and w(n') = w(n')/[(flJb)~/k!] (4.6) 

Therefore, the above assertion implies that for any u, v~ I - R ,  R]d and 
any x with Ixl > R, one may associate to each term in the expansion (4.4) 
of (~0 ;c rxax+, )L+ a term contributing to (ao;r  with the 
ratio (of the former to the latter) not exceeding some factor which is 
uniform in x and L, of the form q(flJo, fi[]Jll, R ) < o o  with ItJll= 
maxz{lJzl }. Furthermore, the number of terms in the first sum which are 
mapped onto any given term of the second sum is uniformly bounded by 
some Q(~0, R) < oo. Hence, for all [xL, L > R, 

(ao;ax~x+~)L.+ <<.~(fiJo, fll[Jll, R)(ao;a~(G+~)L+ (4.7) 

with g(flJo,/~ IlJII, R) = q(flJ0, fl [IJl[, R) Q(gYo, R). A similar argument 
shows that a bound like (4.7) holds also (uniformly in L) for each of the 
finite number of sites of x with Ixl ~<R, and thus (4.7) with ~(.) replaced 
by a similar function g(. ) holds for all x. Summing (4.3) over x, we obtain 

c~ g (4.8) (oo)L.+ ~< g(flJo, fi [IJII, R) ~--~ (Cro)L,+ 
0J-~ 

for all L large enough. That proves (1.8), which, as we saw, implies 
Theorem 2. | 
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